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Abstract: This paper is concerned with a predator-prey system with Beddington-DeAngelis functional response on
time scales. Based on the theory of calculus on time scales, by using the properties of almost periodic functions
and constructing a suitable Lyapunov functional, sufficient conditions which guarantee the existence of a unique
globally attractive positive almost periodic solution of the system are obtained. Finally, an example and numerical
simulations are presented to illustrate the feasibility and effectiveness of the results.
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1 Introduction
In the natural world, there are many species whose de-
veloping processes are both continuous and discrete.
Hence, using the only differential equation or differ-
ence equation can not accurately describe the law of
their developments. Therefore, there is a need to es-
tablish correspondent dynamic models on new time
scales.

In the past few years, different types of ecosys-
tems with periodic coefficients on time scales have
been studied extensively, see, for example, [1]-[6] and
the references therein. However, upon considering
long-term dynamical behaviors, the periodic parame-
ters often turn out to experience certain perturbations,
that is, parameters become periodic up to a small er-
ror, then one has to consider the ecosystems to be al-
most periodic since there is no a priori reason to ex-
pect the existence of periodic solutions. Therefore, if
we consider the effects of the environmental factors
(e.g. seasonal effects of weather, food supplies, mat-
ing habits, and harvesting), the assumption of almost
periodicity is more realistic, more important and more
general. Due to these reasons, almost periodicity of
continuous or discrete ecosystems received more re-
cently researchers’ special attention, see [7-10] and
the references therein.

However, to the best of the authors’ knowledge,
there was few papers published on the existence of
almost periodic solution of ecosystems on time scales.

Motivated by the above, in the present paper, we
shall study an almost periodic predator-prey system
with Beddington-DeAngelis functional response on

time scales as follows:

x∆(t) = x(t)[r1(t)− p1(t)x(t)− d1(t)x(σ(t))]

− k1(t)x(t)y(t)

a(t) + b(t)x(t) + c(t)y(t)
,

y∆(t) = y(t)[−r2(t)− p2(t)y(t)− d2(t)y(σ(t))]

+
k2(t)x(t)y(t)

a(t) + b(t)x(t) + c(t)y(t)
, (1)

where t ∈ T, T is an almost periodic time scale. x(t)
denotes the density of prey specie and y(t) denote
the density of predator species. All the coefficients
a(t), b(t), c(t), ri(t), pi(t), di(t), ki(t)(i = 1, 2) are
continuous, almost periodic functions.

For convenience, we introduce the notation

fu = sup
t∈T

f(t), f l = inf
t∈T

f(t),

where f is a positive and bounded function. Through-
out this paper, we assume that the coefficients of the
almost periodic system (1) satisfy

min
i=1,2

{al, bl, cl, rli, pli, dli, kli} > 0,

max
i=1,2

{au, bu, cu, rui , pui , dui , kui } < +∞.

The initial condition of system (1) in the form

x(t0) = x0, y(t0) = y0, t0 ∈ T,
x0 > 0, y0 > 0. (2)
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The aim of this paper is, by using the properties
of almost periodic functions and constructing a suit-
able Lyapunov functional, to obtain sufficient condi-
tions for the existence of a unique globally attractive
positive almost periodic solution of the system (1).

For relevant definitions and the properties of al-
most periodic functions, see [11, 12]. In this paper,
for each interval I of T, we denote by IT = I ∩ T.

2 Preliminaries

In this section, we shall first recall some basic defini-
tions, lemmas which are used in what follows.

Let T be a nonempty closed subset (time scale) of
R. The forward and backward jump operators σ, ρ :
T → T and the graininess µ : T → R+ are defined,
respectively, by σ(t) = inf{s ∈ T : s > t}, ρ(t) =
sup{s ∈ T : s < t}, µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense points in T. If f
is continuous at each right-dense point and each left-
dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T → R will
be denoted by C(T) = C(T,R).

For y : T → R and t ∈ Tk, we define the delta
derivative of y(t), y∆(t), to be the number (if it exists)
with the property that for a given ε > 0, there exists a
neighborhood U of t such that∣∣[y(σ(t))− y(s)]− y∆(t)[σ(t)− s]

∣∣ < ε|σ(t)− s|

for all s ∈ U.
If y is continuous, then y is right-dense continu-

ous, and y is delta differentiable at t, then y is contin-
uous at t.

Let y be right-dense continuous, if Y ∆(t) = y(t),
then we define the delta integral by∫ t

a
y(s)∆s = Y (t)− Y (a).

Since T is almost periodic, then σ(t) is almost
periodic. The basic theories of calculus on time scales,
one can see [13].

A function p : T → R is called regressive pro-
vided 1+µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all re-
gressive and rd-continuous functions p : T → R will

be denoted by R = R(T,R). Define the set R+ =
R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

If r is a regressive function, then the generalized
exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions,
define

p⊕q = p+q+µp q, ⊖p = − p

1 + µp
, p⊖q = p⊕(⊖q).

Lemma 1. [13] If p, q : T → R be two regressive
functions, then

(i) e0(t, s) ≡ 1, ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) =

1
ep(s,t)

= e⊖p(s, t);
(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t,s)

eq(t,s)
= ep⊖q(t, s);

(vi) (ep(t, s))
∆ = p(t)ep(t, s).

Lemma 2. [14] Assume that a > 0, b > 0 and −a ∈
R+. Then

y∆(t) ≥ (≤)b− ay(t), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≥ (≤)
b

a
[1+(

ay(t0)

b
−1)e(−a)(t, t0)], t ∈ [t0,∞)T.

Lemma 3. [14] Assume that a > 0, b > 0. Then

y∆(t) ≤ (≥)y(t)(b−ay(σ(t))), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≤ (≥)
b

a
[1+(

b

ay(t0)
−1)e⊖b(t, t0)], t ∈ [t0,∞)T.

Let T be a time scale with at least two positive
points, one of them being always one: 1 ∈ T, there
exists at least one point t ∈ T such that 0 < t ̸= 1.
Define the natural logarithm function on the time scale
T by

LT(t) =

∫ t

1

1

τ
∆τ, t ∈ T ∩ (0,+∞).
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Lemma 4. [15] Assume that x : T → R+ is strictly
increasing and T̃ := x(T) is a time scale. If x∆(t)
exists for t ∈ Tk, then

∆

∆t
LT(x(t)) =

x∆(t)

x(t)
.

Lemma 5. [13] Assume that f, g : T → R are differ-
entiable at t ∈ Tk, then fg : T → R is differentiable
at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).

3 Main Results

Assume that the coefficients of (1) satisfy

(H1) ku2M1 − alrl2 > 0;

(H2) al(rl1 − pu1M1)− ku1M2 > 0;

(H3) kl2m1 − au(ru2 + pu2M2) > 0.

Lemma 6. Let (x(t), y(t)) be any positive solution of
system (1) with initial condition (2). If (H1) hold, then
system (1) is permanent, that is, any positive solution
(x(t), y(t)) of system (1) satisfies

m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M1, (3)

m2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤ M2, (4)

especially if m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, then

m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,+∞)T,

where

M1 =
ru1
dl1

, M2 =
ku2M1

aldl2
− rl2

dl2
,

m1 =
rl1 − pu1M1

du1
− ku1M2

aldu1
,

m2 =
kl2m1

audu2
− ru2 + pu2M2

du2
.

Proof. Assume that (x(t), y(t)) be any positive solu-
tion of system (1) with initial condition (2). From the
first equation of system (1), we have

x∆(t) ≤ x(t)(ru1 − dl1x(σ(t))). (5)

By Lemma 2, we can get

lim sup
t→+∞

x(t) ≤ ru1
dl1

:= M1.

Then, for arbitrary small positive constant ε > 0, there
exists a T1 > 0 such that

x(t) < M1 + ε, ∀t ∈ [T1,+∞]T.

From the second equation of system (1), when t ∈
[T1,+∞)T,

y∆(t) < y(t)

[
ku2 (M1 + ε)

al
− rl2 − dl2y(σ(t))

]
.

Let ε → 0, then

y∆(t) ≤ y(t)

[
ku2M1

al
− rl2 − dl2y(σ(t))

]
. (6)

By Lemma 2, we can get

lim sup
t→+∞

y(t) =
ku2M1

aldl2
− rl2

dl2
:= M2.

Then, for arbitrary small positive constant ε > 0, there
exists a T2 > T1 such that

y(t) < M2 + ε, ∀t ∈ [T2,+∞]T.

On the other hand, from the first equation of sys-
tem (1), when t ∈ [T2,+∞)T,

x∆(t) > x(t)

[
rl1 − pu1(M1 + ε)− ku1 (M2 + ε)

al

−du1x(σ(t))

]
.

Let ε → 0, then

x∆(t) ≥ x(t)

[
rl1 − pu1M1 −

ku1M2

al
− du1x(σ(t))

]
. (7)

By Lemma 2, we can get

lim inf
t→+∞

x(t) =
rl1 − pu1M1

du1
− ku1M2

aldu1
:= m1.

Then, for arbitrary small positive constant ε > 0, there
exists a T3 > T2 such that

x(t) > m1 − ε, ∀t ∈ [T3,+∞]T.

From the second equation of system (1), when t ∈
[T3,+∞)T,

y∆(t) > y(t)

[
kl2(m1 − ε)

au
− ru2 − pu2(M2 + ε)

−du2y(σ(t))

]
.
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Let ε → 0, then

y∆(t) ≥ y(t)

[
kl2m1

au
− ru2 − pu2M2 − du2y(σ(t))

]
. (8)

By Lemma 2, we can get

lim inf
t→+∞

y(t) =
kl2m1

audu2
− ru2 + pu2M2

du2
:= m2.

Then, for arbitrary small positive constant ε > 0, there
exists a T4 > T3 such that

y(t) > m2 − ε, ∀t ∈ [T4,+∞]T.

In special case, if m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤
M2, by Lemma 2, it follows from (5)-(8) that

m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,+∞)T,

This completes the proof.

Let S(T) be the set of all solutions (x(t), y(t))
of system (1) satisfying m1 ≤ x(t) ≤ M1, m2 ≤
y(t) ≤ M2 for all t ∈ T.

Lemma 7. S(T) ̸= ∅.

Proof. By Lemma 6, we see that for any t0 ∈ T
with m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, system (1)
has a solution (x(t), y(t)) satisfying m1 ≤ x(t) ≤
M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,+∞)T. Since a(t),
b(t), c(t), ri(t), pi(t), di(t), ki(t), σ(t), i = 1, 2
are almost periodic, there exists a sequence {tn},
tn → +∞ as n → +∞ such that a(t + tn) →
a(t), b(t+ tn) → b(t), c(t+ tn) → c(t), ri(t+ tn) →
r(t), pi(t + tn) → pi(t), di(t + tn) → di(t), ki(t +
tn) → ki(t), σ(t+ tn) → σ(t), i = 1, 2 as n → +∞
uniformly on T.

We claim that {x(t+tn)} and {y(t+tn)} are uni-
formly bounded and equi-continuous on any bounded
interval in T.

In fact, for any bounded interval [α, β]T ⊂ T,
when n is large enough, α + tn > t0, then t + tn >
t0, ∀t ∈ [α, β]T. So, m1 ≤ x(t + tn) ≤ M1, m2 ≤
y(t+tn) ≤ M2 for any t ∈ [α, β]T, that is, {x(t+tn)}
and {y(t+ tn)} are uniformly bounded. On the other
hand, ∀t1, t2 ∈ [α, β]T, from the mean value theorem
of differential calculus on time scales, we have

|x(t1 + tn)− x(t2 + tn)|

≤ M1

[
ru1 + (pu1 + du1)M1 +

ku1M2

al + blm1 + clm2

]
×|t1 − t2|, (9)
|y(t1 + tn)− y(t2 + tn)|

≤ M2

[
ru2 + (pu2 + du2)M2 +

ku2M1

al + blm1 + clm2

]
×|t1 − t2|. (10)

The inequalities (9) and (10) show that {x(t + tn)}
and {y(t + tn)} are equi-continuous on [α, β]T. By
the arbitrary of [α, β]T, the conclusion is valid.

By Ascoli-Arzela theorem, there exists a subse-
quence of {tn}, we still denote it as {tn}, such that

x(t+ tn) → u(t), y(t+ tn) → v(t),

as n → +∞ uniformly in t on any bounded interval
in T. For any θ ∈ T, we can assume that tn + θ ≥ t0
for all n, and let t ≥ 0, integrate both equations of
system (1) from tn + θ to t+ tn + θ, we have

x(t+ tn + θ)− x(tn + θ)

=

∫ t+tn+θ

tn+θ
x(s)[r1(s)− p1(s)x(s)

− d1(s)x(σ(s))]−
k1(s)x(s)y(s)

a(s) + b(s)x(s) + c(s)y(s)
∆s

=

∫ t+θ

θ
x(s+ tn)[r1(s+ tn)

− p1(s+ tn)x(s+ tn)− d1(s+ tn)x(σ(s+ tn))]

− k1(s+ tn)x(s+ tn)y(s+ tn)

Φ(s+ tn)
∆s,

and

y(t+ tn + θ)− y(tn + θ)

=

∫ t+tn+θ

tn+θ
y(s)[−r2(s)− p2(s)y(s)

− d2(s)y(σ(s))] +
k2(s)x(s)y(s)

a(s) + b(s)x(s) + c(s)y(s)
∆s

=

∫ t+θ

θ
y(s+ tn)[−r2(s+ tn)

− p2(s+ tn)y(s+ tn)− d2(s+ tn)y(σ(s+ tn))]

+
k2(s+ tn)x(s+ tn)y(s+ tn)

Φ(s+ tn)
∆s.

where Φ(s+ tn) = a(s+ tn)+ b(s+ tn)x(s+ tn)+
c(s + tn)y(s + tn). Using the Lebesgues dominated
convergence theorem, we have

u(t+ θ)− u(θ)

=

∫ t+θ

θ
x(s)[r1(s)− p1(s)x(s)− d1(s)x(σ(s))]

− k1(s)x(s)y(s)

a(s) + b(s)x(s) + c(s)y(s)
∆s,

v(t+ θ)− v(θ)

=

∫ t+θ

θ
y(s)[−r2(s)− p2(s)y(s)− d2(s)y(σ(s))]

+
k2(s)x(s)y(s)

a(s) + b(s)x(s) + c(s)y(s)
∆s.
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This means that (u(t), v(t)) is a solution of system
(1), and by the arbitrary of θ, (u(t), v(t)) is a solution
of system (1) on T. It is clear that

m1 ≤ u(t) ≤ M1, m2 ≤ v(t) ≤ M2, ∀t ∈ T.

This completes the proof.

Lemma 8. In addition to the conditions (H1)− (H3),
assume further that the coefficients of system (1) sat-
isfy the following conditions:

(H4) pl1 +
kl2b

lm1

(au+buM1+cuM2)2
− ku1 b

uM2

(al)2
− ku2

al
> 0;

(H5) pl2 +
kl1

au+buM1+cuM2
+

kl2c
lm1

(au+buM1+cuM2)2

− ku1 c
uM2

(al)2
> 0.

Then system (1) is globally attractive.

Proof. Let z1(t) = (x1(t), y1(t)) and z2(t) =
(x2(t), y2(t)) be any two positive solutions of system
(1). By (H4) and (H5), there exists a sufficient small
positive constant ε0 (0 < ε0 < min{m1,m2}) such
that

Γ1 =: pl1 +
kl2b

l(m1 − ε0)

(au + bu(M1 + ε0) + cu(M2 + ε0))2

−ku1 b
u(M2 + ε0)

(al)2
− ku2

al
> 0, (11)

Γ2 =: pl2 +
kl1

au + bu(M1 + ε0) + cu(M2 + ε0)

+
kl2c

l(m1 − ε0)

(au + bu(M1 + ε0) + cu(M2 + ε0))2

−ku1 c
u(M2 + ε0)

(al)2
> 0. (12)

It follows from (3)-(4) that for the above ε0, there
exists a T > 0 such that

m1 − ε0 < xi(t) < M1 + ε0,

m2 − ε0 < yi(t) < M2 + ε0,

for t ∈ [T,+∞)T, i = 1, 2.
Since xi(t), yi(t), i = 1, 2 are positive, bounded

and differentiable functions on T, then there exists
two positive, bounded and differentiable functions
f(t), g(t), t ∈ T, such that xi(t)(1 + f(t)), yi(t)(1 +
g(t)), i = 1, 2 are strictly increasing on T, respec-
tively. By Lemma 3 and Lemma 4, we have

∆

∆t
LT(xi(t)[1 + f(t)]) =

x∆i (t)

xi(t)
+

xi(σ(t))f
∆(t)

xi(t)[1 + f(t)]
,

∆

∆t
LT(yi(t)[1 + g(t)]) =

y∆i (t)

yi(t)
+

yi(σ(t))g
∆(t)

yi(t)[1 + g(t)]
.

Here, we can choose two functions f(t) and g(t) such
that |f∆(t)|

1+f(t) and |g∆(t)|
1+g(t) be two bounded functions on T,

that is,

0 < ζ1 <
|f∆(t)|
1 + f(t)

< ξ1, 0 < ζ2 <
|g∆(t)|
1 + g(t)

< ξ2,

for all t ∈ T, where ζi, ξi, i = 1, 2 are positive con-
stants.

Set

V (t) =

e−δ(t, T )|LT(x1(t)(1+ f))−LT(x2(t)(1+ f))|
+e−δ(t, T )|LT(y1(t)(1+ g))−LT(y2(t)(1+ g))|,

where δ ≥ 0 is a constant (if µ(t) = 0, then δ = 0;
if µ(t) > 0, then δ > 0). It follows from the mean
value theorem of differential calculus on time scales
for t ∈ [T,+∞)T,

1

M1 + ε0
|x1(t)− x2(t)|

≤ |LT(x1(t)(1 + f(t)))− LT(x2(t)(1 + f(t)))|

≤ 1

m1 − ε0
|x1(t)− x2(t)|, (13)

1

M2 + ε0
|y1(t)− y2(t)|

≤ |LT(y1(t)(1 + g(t)))− LT(y2(t)(1 + g(t)))|

≤ 1

m2 − ε0
|y1(t)− y2(t)|. (14)

Let γ = min{Γ1(m1 − ε0),Γ2(m2 − ε0)}. We
divide the proof into two cases.

Case I. If µ(t) > 0, set δ >

max{ (M1+ε0)ξ1
m1−ε0

, (M2+ε0)ξ2
m2−ε0

, γ} and 1 − µ(t)δ < 0.
Calculating the upper right derivatives of V (t) along
the solution of system (1), it follows from (11)-(14),
(H4) and (H5) that for t ∈ [T,+∞)T,

D+V (t)

= e−δ(t, T )sgn(x1(t)− x2(t))

[
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

+
f∆(t)

1 + f(t)

(
x1(σ(t))

x1(t)
− x2(σ(t))

x2(t)

)]
−δe−δ(t, T )|LT(x1(σ(t))(1 + f(σ(t))))

−LT(x2(σ(t))(1 + f(σ(t))))|

+e−δ(t, T )sgn(y1(t)− y2(t))

[
y∆1 (t)

y1(t)
− y∆2 (t)

y2(t)

+
g∆(t)

1 + g(t)

(
y1(σ(t))

y1(t)
− y2(σ(t))

y2(t)

)]
−δe−δ(t, T )|LT(y1(σ(t))(1 + g(σ(t))))

−LT(y2(σ(t))(1 + g(σ(t))))|
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= e−δ(t, T )sgn(x1(t)− x2(t))

[
− p1(t)(x1(t)

−x2(t))− d1(t)(x1(σ(t))− x2(σ(t)))

−k1(t)

(
y1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− y2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)
+

f∆(t)

1 + f(t)

x1(σ(t))x2(t)− x1(t)x2(σ(t))

x1(t)x2(t)

]
−δe−δ(t, T )|LT(x1(σ(t))(1 + f(σ(t))))

−LT(x2(σ(t))(1 + f(σ(t))))|

+e−δ(t, T )sgn(y1(t)− y2(t))

[
− p2(t)(y1(t)

−y2(t))− d2(t)(y1(σ(t))− y2(σ(t)))

+k2(t)

(
x1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− x2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)
+

g∆(t)

1 + g(t)

y1(σ(t))y2(t)− y1(t)y2(σ(t))

y1(t)y2(t)

]
−δe−δ(t, T )|LT(y1(σ(t))(1 + g(σ(t))))

−LT(y2(σ(t))(1 + g(σ(t))))|

≤ e−δ(t, T )sgn(x1(t)− x2(t))

[
− p1(t)(x1(t)

−x2(t))− d1(t)(x1(σ(t))− x2(σ(t)))

−k1(t)

(
y1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− y2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

+
y2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− y2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)
+

f∆(t)

1 + f(t)

(
x1(σ(t))(x2(t)− x1(t))

x1(t)x2(t)

+
x1(t)(x1(σ(t))− x2(σ(t)))

x1(t)x2(t)

)]
−e−δ(t, T )

δ

M1 + ε0
|x1(σ(t))− x2(σ(t))|

+e−δ(t, T )sgn(y1(t)− y2(t))

[
− p2(t)(y1(t)

−y2(t))− d2(t)(y1(σ(t))− y2(σ(t)))

+k2(t)

(
x1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− x2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

+
x2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− x2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)
+

g∆(t)

1 + g(t)

(
y1(σ(t))(y2(t)− y1(t))

y1(t)y2(t)

+
y1(t)(y1(σ(t))− y2(σ(t)))

y1(t)y2(t)

)]
−e−δ(t, T )

δ

M2 + ε0
|y1(σ(t))− y2(σ(t))|

≤ −e−δ(t, T )

(
p1(t)−

k1(t)b(t)y2(t)

a2(t)

− k2(t)

a(t) + b(t)x1(t) + c(t)y1(t)
+

k2(t)b(t)x2(t)

Ψ(t)

+
f∆(t)

1 + f(t)

x1(σ(t))

x1(t)x2(t)

)
|x1(t)− x2(t)|

−e−δ(t, T )

(
p2(t) +

k1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

−k1(t)c(t)y2(t)

a2(t)
+

k2(t)c(t)x2(t)

Ψ(t)

+
g∆(t)

1 + g(t)

y1(σ(t))

y1(t)y2(t)

)
|y1(t)− y2(t)|

−e−δ(t, T )

(
δ

M1 + ε0
+ d1(t)

− |f∆(t)|
1 + f(t)

1

x2(t)

)
|x1(σ(t))− x2(σ(t))|

−e−δ(t, T )

(
δ

M2 + ε0
+ d2(t)

− |g∆(t)|
1 + g(t)

1

y2(t)

)
|y1(σ(t))− y2(σ(t))|

≤ −Γ1(m1 − ε0)e−δ(t, T )|LT(x1(t)(1 + f(t)))

−LT(x2(t)(1 + f(t)))|
−Γ2(m2 − ε0)e−δ(t, T )|LT(y1(t)(1 + g(t)))

−LT(y2(t)(1 + g(t)))|
= −γV (t), (15)

where Ψ(t) = (a(t) + b(t)x1(t) + c(t)y1(t))(a(t)
+ b(t)x2(t) + c(t)y2(t)).

By the comparison theorem and (15), we have

V (t) ≤ e−γ(t, T )V (T )

< 2

(
M1 + ε0
m1 − ε0

+
M2 + ε0
m2 − ε0

)
e−γ(t, T ),

that is,

e−δ(t, T )(|LT(x1(t)(1 + f(t)))

−LT(x2(t)(1 + f(t)))|
+|LT(y1(t)(1 + g(t)))− LT(y2(t)(1 + g(t)))|)
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< 2

(
M1 + ε0
m1 − ε0

+
M2 + ε0
m2 − ε0

)
e−γ(t, T ),

then

1

M1 + ε0
|x1(t)− x2(t)|+

1

M2 + ε0
|y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+
M2 + ε0
m2 − ε0

)
e(−γ)⊖(−δ)(t, T ). (16)

Since 1 − µ(t)δ < 0 and 0 < γ < δ, then (−γ) ⊖
(−δ) < 0. It follows from (16) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

Case II. If µ(t) = 0, set δ = 0, then σ(t) = t and
e−δ(t, T ) = 1. Calculating the upper right derivatives
of V (t) along the solution of system (1), it follows
from (11)-(14), (H4) and (H5) that for t ∈ [T,+∞)T,

D+V (t)

= sgn(x1(t)− x2(t))

[
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

]
+sgn(y1(t)− y2(t))

[
y∆1 (t)

y1(t)
− y∆2 (t)

y2(t)

]
= sgn(x1(t)− x2(t))

[
− p1(t)(x1(t)− x2(t))

−d1(t)(x1(t)− x2(t))

−k1(t)

(
y1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− y2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)]
+sgn(y1(t)− y2(t))

[
− p2(t)(y1(t)− y2(t))

−d2(t)(y1(t)− y2(t))

+k2(t)

(
x1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− x2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)]
≤ sgn(x1(t)− x2(t))

[
− p1(t)(x1(t)− x2(t))

−d1(t)(x1(t)− x2(t))

−k1(t)

(
y1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− y2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

+
y2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− y2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)]
+sgn(y1(t)− y2(t))

[
− p2(t)(y1(t)− y2(t))

−d2(t)(y1(t)− y2(t))

+k2(t)

(
x1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− x2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

+
x2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

− x2(t)

a(t) + b(t)x2(t) + c(t)y2(t)

)
≤ −

(
p1(t)−

k1(t)b(t)y2(t)

a2(t)

− k2(t)

a(t) + b(t)x1(t) + c(t)y1(t)

+
k2(t)b(t)x2(t)

Ψ(t)

)
|x1(t)− x2(t)|

−
(
p2(t) +

k1(t)

a(t) + b(t)x1(t) + c(t)y1(t)

−k1(t)c(t)y2(t)

a2(t)

+
k2(t)c(t)x2(t)

Ψ(t)

)
|y1(t)− y2(t)|

≤ −Γ1(m1 − ε0)|LT(x1(t)(1 + f(t)))

−LT(x2(t)(1 + f(t)))|
−Γ2(m2 − ε0)|LT(y1(t)(1 + g(t)))

−LT(y2(t)(1 + g(t)))|
= −γV (t). (17)

By the comparison theorem and (17), we have

V (t) ≤ e−γ(t, T )V (T )

< 2

(
M1 + ε0
m1 − ε0

+
M2 + ε0
m2 − ε0

)
e−γ(t, T ),

that is,

|LT(x1(t)(1 + f(t)))− LT(x2(t)(1 + f(t)))|
+|LT(y1(t)(1 + g(t)))− LT(y2(t)(1 + g(t)))|

< 2

(
M1 + ε0
m1 − ε0

+
M2 + ε0
m2 − ε0

)
e−γ(t, T ),

then

1

M1 + ε0
|x1(t)− x2(t)|+

1

M2 + ε0
|y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+
M2 + ε0
m2 − ε0

)
e−γ(t, T ). (18)
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It follows from (18) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

This completes the proof.

Theorem 9. Assume that the conditions (H1)− (H5)
hold, then system (1) has a unique globally attractive
positive almost periodic solution.

Proof. By Lemma 7, there exists a bounded positive
solution u(t) = (u1(t), u2(t)) ∈ S(T), then there ex-
ists a sequence {t′k}, {t′k} → +∞ as k → +∞, such
that (u1(t + t′k), u2(t + t′k)) is a solution of the fol-
lowing system:

x∆(t) = x(t)[r1(t+ t′k)− p1(t+ t′k)x(t)

−d1(t+ t′k)x(σ(t+ t′k))]

−
k1(t+ t′k)x(t)y(t)

a(t+ t′k) + b(t+ t′k)x(t) + c(t+ t′k)y(t)
,

y∆(t) = y(t)[−r2(t+ t′k)− p2(t+ t′k)y(t)

−d2(t+ t′k)y(σ(t+ t′k))]

+
k2(t+ t′k)x(t)y(t)

a(t+ t′k) + b(t+ t′k)x(t) + c(t+ t′k)y(t)
.

From the above discussion and Lemma 1, we have
that not only {ui(t + t′k)}, i = 1, 2 but also {u∆i (t +
t′k)}, i = 1, 2 are uniformly bounded, thus {ui(t +
t′k)}, i = 1, 2 are uniformly bounded and equi-
continuous. By Ascoli-Arzela theorem, there exists
a subsequence of {ui(t + tk)} ⊆ {ui(t + t′k)} such
that for any ε > 0, there exists a N(ε) > 0 with the
property that if m, k > N(ε) then

|ui(t+ tm)− ui(t+ tk)| < ε, i = 1, 2.

It shows that ui(t), i = 1, 2 are asymptotically almost
periodic functions, then, {ui(t+ tk)}, i = 1, 2 are the
sum of an almost periodic function qi(t+ tk), i = 1, 2
and a continuous function pi(t+ tk), i = 1, 2 defined
on T, that is

ui(t+ tk) = pi(t+ tk) + qi(t+ tk), ∀t ∈ T,

where

lim
k→+∞

pi(t+ tk) = 0, lim
k→+∞

qi(t+ tk) = qi(t),

qi(t) is an almost periodic function. It means that
lim

k→+∞
ui(t+ tk) = qi(t), i = 1, 2.

On the other hand

lim
k→+∞

u∆i (t+ tk)

= lim
k→+∞

lim
h→0

ui(t+ tk + h)− ui(t+ tk)

h

= lim
h→0

lim
k→+∞

ui(t+ tk + h)− ui(t+ tk)

h

= lim
h→0

qi(t+ h)− qi(t)

h
.

So, the limit qi(t), i = 1, 2 exist.
Now we shall prove that (q1(t), q2(t)) is an al-

most solution of system (1).
From the properties of almost periodic function,

there exists a sequence {tn}, tn → +∞ as n →
+∞, such that a(t + tn) → a(t), b(t + tn) →
b(t), c(t+tn) → c(t), ri(t+tn) → r(t), pi(t+tn) →
pi(t), di(t + tn) → di(t), ki(t + tn) → ki(t), σ(t +
tn) → σ(t), i = 1, 2 as n → +∞ uniformly on T.

It is easy to know that ui(t+ tn) = qi(t), i = 1, 2
as n → +∞, then we have

q∆1 (t)

= lim
n→+∞

u∆1 (t+ tn)

= lim
n→+∞

u1(t+ tn)[r1(t+ tn)

−p1(t+ tn)u1(t+ tn)

−d1(t+ tn)u1(σ(t+ tn))]

−k1(t+ tn)u1(t+ tn)u2(t+ tn)

Θ(t+ tn)

= q1(t)[r1(t)− p1(t)q1(t)− d1(t)q1(σ(t))]

− k1(t)q1(t)q2(t)

a(t) + b(t)q1(t) + c(t)q2(t)
,

q∆2 (t)

= lim
n→+∞

u∆2 (t+ tn)

= lim
n→+∞

u2(t+ tn)[−r2(t+ tn)

−p2(t+ tn)u2(t+ tn)

−d2(t+ tn)y(σ(t+ tn))]

+
k2(t+ tn)u1(t+ tn)u2(t+ tn)

Θ(t+ tn)

= q2(t)[−r2(t)− p2(t)q2(t)− d2(t)q2(σ(t))]

+
k2(t)q1(t)q2(t)

a(t) + b(t)q1(t) + c(t)q2(t)
,

where

Θ(t+ tn) = a(t+ tn) + b(t+ tn)u1(t+ tn)

+c(t+ tn)u2(t+ tn).

This proves that (q1(t), q2(t)) is a positive almost
periodic solution of system (1). By Lemma 8, it fol-
lows that system (1) has a unique globally attractive
positive almost periodic solution. This completes the
proof.

WSEAS TRANSACTIONS on MATHEMATICS Lili Wang, Meng Hu

E-ISSN: 2224-2880 1131 Issue 11, Volume 12, November 2013



4 An Example

Consider the following almost periodic predator-prey
system with Beddington-DeAngelis functional re-
sponse on time scales

x∆(t) = x(t)[10 + cos(
√
2t)− x(t)− x(σ(t))]

− (1 + 0.5 cos t)x(t)y(t)

1 + x(t) + (0.03 + 0.01 cos t)y(t)
,

y∆(t) = y(t)[−2− cos(
√
2t)− 2y(t)− y(σ(t))]

+
(3 + cos t)x(t)y(t)

1 + x(t) + (0.03 + 0.01 cos t)y(t)
.(19)

Obviously,

ru1 = 11, rl1 = 9, ru2 = 3, rl2 = 1, pu1 = pl1 = 1,

pu2 = pl2 = 2, du1 = dl1 = 1, du2 = dl2 = 1,

ku1 = 1.5, kl1 = 0.5, ku2 = 4, kl2 = 2,

au = al = 1, bu = bl = 1, cu = 0.04, cl = 0.02.

By a direct calculation, we can get

(H1) ku2M1 − alrl2 = 0.1634 > 0;

(H2) al(rl1 − pu1M1)− ku1M2 = 0.0012 > 0;

(H3) kl2m1 − au(ru2 + pu2M2) = 0.1232 > 0;

(H4) pl1 +
kl2b

lm1

(au+buM1+cuM2)2
− ku1 b

uM2

(al)2
− ku2

al

= 0.0019 > 0;

(H5) pl2 +
kl1

au+buM1+cuM2
+

kl2c
lm1

(au+buM1+cuM2)2

− ku1 c
uM2

(al)2
= 0.046 > 0.

That is, the conditions (H1) − (H5) hold. Accord-
ing to Theorems 9, system (19) has a unique globally
attractive positive almost periodic solution. For dy-
namic simulations of system (19) with T = R and
T = Z, see Figures 1 and 2, respectively.

5 Conclusion

This paper is focused on the existence of a unique
globally attractive positive almost periodic solution of
a predator-prey system with Beddington-DeAngelis
functional response on time scales. The methods used
in this paper are completely new, and the methods that
can be applied to many other ecosystems.
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Figure 1: T = R. Dynamics behavior of system (19)
with initial condition (x(0), y(0)) = {(1, 1); (5, 5);
(10, 10)}.
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Figure 2: T = Z. Dynamics behavior of system (19)
with initial condition (x(1), y(1)) = {(5, 5); (10, 10);
(15, 15)}.
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